3.23.95 \(\int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx\) [2295]

3.23.95.1 Optimal result
3.23.95.2 Mathematica [A] (verified)
3.23.95.3 Rubi [A] (verified)
3.23.95.4 Maple [A] (verified)
3.23.95.5 Fricas [A] (verification not implemented)
3.23.95.6 Sympy [F]
3.23.95.7 Maxima [A] (verification not implemented)
3.23.95.8 Giac [B] (verification not implemented)
3.23.95.9 Mupad [F(-1)]

3.23.95.1 Optimal result

Integrand size = 26, antiderivative size = 151 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=-\frac {6655 \sqrt {1-2 x} \sqrt {3+5 x}}{21952 (2+3 x)}-\frac {605 \sqrt {1-2 x} (3+5 x)^{3/2}}{4704 (2+3 x)^2}-\frac {11 \sqrt {1-2 x} (3+5 x)^{5/2}}{168 (2+3 x)^3}+\frac {\sqrt {1-2 x} (3+5 x)^{7/2}}{4 (2+3 x)^4}-\frac {73205 \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{21952 \sqrt {7}} \]

output
-73205/153664*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)-605/ 
4704*(3+5*x)^(3/2)*(1-2*x)^(1/2)/(2+3*x)^2-11/168*(3+5*x)^(5/2)*(1-2*x)^(1 
/2)/(2+3*x)^3+1/4*(3+5*x)^(7/2)*(1-2*x)^(1/2)/(2+3*x)^4-6655/21952*(1-2*x) 
^(1/2)*(3+5*x)^(1/2)/(2+3*x)
 
3.23.95.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.52 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=\frac {\frac {7 \sqrt {1-2 x} \sqrt {3+5 x} \left (105552+654436 x+1285720 x^2+814395 x^3\right )}{(2+3 x)^4}-219615 \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{460992} \]

input
Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^5,x]
 
output
((7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(105552 + 654436*x + 1285720*x^2 + 814395* 
x^3))/(2 + 3*x)^4 - 219615*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 
5*x])])/460992
 
3.23.95.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {105, 105, 105, 105, 104, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{(3 x+2)^5} \, dx\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {11}{8} \int \frac {(5 x+3)^{5/2}}{\sqrt {1-2 x} (3 x+2)^4}dx+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {11}{8} \left (\frac {55}{42} \int \frac {(5 x+3)^{3/2}}{\sqrt {1-2 x} (3 x+2)^3}dx-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{21 (3 x+2)^3}\right )+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {11}{8} \left (\frac {55}{42} \left (\frac {33}{28} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} (3 x+2)^2}dx-\frac {\sqrt {1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{21 (3 x+2)^3}\right )+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {11}{8} \left (\frac {55}{42} \left (\frac {33}{28} \left (\frac {11}{14} \int \frac {1}{\sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx-\frac {\sqrt {1-2 x} \sqrt {5 x+3}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{21 (3 x+2)^3}\right )+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {11}{8} \left (\frac {55}{42} \left (\frac {33}{28} \left (\frac {11}{7} \int \frac {1}{-\frac {1-2 x}{5 x+3}-7}d\frac {\sqrt {1-2 x}}{\sqrt {5 x+3}}-\frac {\sqrt {1-2 x} \sqrt {5 x+3}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{21 (3 x+2)^3}\right )+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {11}{8} \left (\frac {55}{42} \left (\frac {33}{28} \left (-\frac {11 \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{7 \sqrt {7}}-\frac {\sqrt {1-2 x} \sqrt {5 x+3}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}\right )-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{21 (3 x+2)^3}\right )+\frac {\sqrt {1-2 x} (5 x+3)^{7/2}}{4 (3 x+2)^4}\)

input
Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^5,x]
 
output
(Sqrt[1 - 2*x]*(3 + 5*x)^(7/2))/(4*(2 + 3*x)^4) + (11*(-1/21*(Sqrt[1 - 2*x 
]*(3 + 5*x)^(5/2))/(2 + 3*x)^3 + (55*(-1/14*(Sqrt[1 - 2*x]*(3 + 5*x)^(3/2) 
)/(2 + 3*x)^2 + (33*(-1/7*(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2 + 3*x) - (11*Ar 
cTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(7*Sqrt[7])))/28))/42))/8
 

3.23.95.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 
3.23.95.4 Maple [A] (verified)

Time = 1.12 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.85

method result size
risch \(-\frac {\left (-1+2 x \right ) \sqrt {3+5 x}\, \left (814395 x^{3}+1285720 x^{2}+654436 x +105552\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{65856 \left (2+3 x \right )^{4} \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right )}\, \sqrt {1-2 x}}+\frac {73205 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{307328 \sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(129\)
default \(\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (17788815 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{4}+47436840 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{3}+47436840 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+11401530 x^{3} \sqrt {-10 x^{2}-x +3}+21083040 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +18000080 x^{2} \sqrt {-10 x^{2}-x +3}+3513840 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+9162104 x \sqrt {-10 x^{2}-x +3}+1477728 \sqrt {-10 x^{2}-x +3}\right )}{921984 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )^{4}}\) \(250\)

input
int((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x,method=_RETURNVERBOSE)
 
output
-1/65856*(-1+2*x)*(3+5*x)^(1/2)*(814395*x^3+1285720*x^2+654436*x+105552)/( 
2+3*x)^4/(-(-1+2*x)*(3+5*x))^(1/2)*((1-2*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2)+7 
3205/307328*7^(1/2)*arctan(9/14*(20/3+37/3*x)*7^(1/2)/(-90*(2/3+x)^2+67+11 
1*x)^(1/2))*((1-2*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2)
 
3.23.95.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.77 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=-\frac {219615 \, \sqrt {7} {\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (814395 \, x^{3} + 1285720 \, x^{2} + 654436 \, x + 105552\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{921984 \, {\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="fricas")
 
output
-1/921984*(219615*sqrt(7)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*arctan( 
1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 
14*(814395*x^3 + 1285720*x^2 + 654436*x + 105552)*sqrt(5*x + 3)*sqrt(-2*x 
+ 1))/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)
 
3.23.95.6 Sympy [F]

\[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=\int \frac {\sqrt {1 - 2 x} \left (5 x + 3\right )^{\frac {5}{2}}}{\left (3 x + 2\right )^{5}}\, dx \]

input
integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**5,x)
 
output
Integral(sqrt(1 - 2*x)*(5*x + 3)**(5/2)/(3*x + 2)**5, x)
 
3.23.95.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.04 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=\frac {73205}{307328} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {3025}{16464} \, \sqrt {-10 \, x^{2} - x + 3} + \frac {{\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{84 \, {\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} - \frac {125 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{1176 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac {1815 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{10976 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac {22385 \, \sqrt {-10 \, x^{2} - x + 3}}{65856 \, {\left (3 \, x + 2\right )}} \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="maxima")
 
output
73205/307328*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 3 
025/16464*sqrt(-10*x^2 - x + 3) + 1/84*(-10*x^2 - x + 3)^(3/2)/(81*x^4 + 2 
16*x^3 + 216*x^2 + 96*x + 16) - 125/1176*(-10*x^2 - x + 3)^(3/2)/(27*x^3 + 
 54*x^2 + 36*x + 8) + 1815/10976*(-10*x^2 - x + 3)^(3/2)/(9*x^2 + 12*x + 4 
) - 22385/65856*sqrt(-10*x^2 - x + 3)/(3*x + 2)
 
3.23.95.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (118) = 236\).

Time = 0.57 (sec) , antiderivative size = 368, normalized size of antiderivative = 2.44 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=\frac {14641}{614656} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {73205 \, \sqrt {10} {\left (3 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{7} + 3080 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{5} + 1144640 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} - \frac {65856000 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} + \frac {263424000 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{32928 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{4}} \]

input
integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^5,x, algorithm="giac")
 
output
14641/614656*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3 
)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10 
*x + 5) - sqrt(22)))) - 73205/32928*sqrt(10)*(3*((sqrt(2)*sqrt(-10*x + 5) 
- sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqr 
t(22)))^7 + 3080*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*s 
qrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 1144640*((sqrt(2)*s 
qrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(- 
10*x + 5) - sqrt(22)))^3 - 65856000*(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/s 
qrt(5*x + 3) + 263424000*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22) 
))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/ 
(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^4
 
3.23.95.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^5} \, dx=\int \frac {\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}}{{\left (3\,x+2\right )}^5} \,d x \]

input
int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^5,x)
 
output
int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^5, x)